US LHC Accelerator Research Program

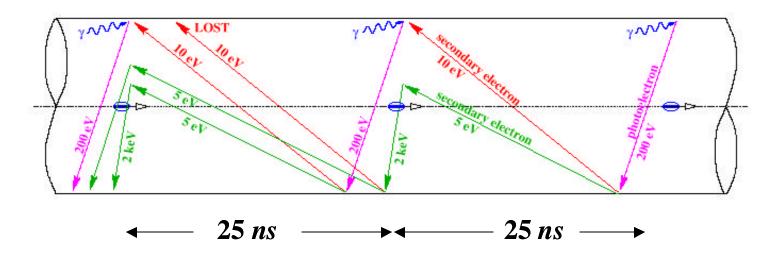
bnl - fnal- lbnl - slac

Electron Cloud

Miguel A. Furman (LBNL)

mafurman@lbl.gov

LARP Collaboration Mtg. Danford's Inn, April 6-8, 2005


Summary

- > E-cloud update
- > Goals
- ➤ New e-cloud activities at LBNL (not LARP-funded)
 - Details in Jean-Luc Vay's talk (next)
- > Proposed additional work

(for strong-strong beam-beam activities at LBNL, see Tanaji Sen's talk)

The electron-cloud effect in LHC

- Beam synchrotron radiation is important
 - -provides source of photo-electrons
- •Secondary emission yield (SEY) $\delta(E)$ is important
 - –characterized by peak value δ_{max}
 - -determines overall e-density
- •e $^-$ reflectivity $\delta(0)$ is important
 - -determines survival time of e-
- Bunch intensity N and beam fill pattern are important
- •Main concern: power deposition by electrons

E-cloud-related recent developments

>RHIC

- •CERN e⁻ detectors for IP12
 - -drawings ready this month
 - -to be shipped and installed starting July 2005
 - -testing and calibration during 2006 run
 - -two dipole magnets, B≤0.2 T (one detector/dipole)
 - -change in design: RT, not cold region
 - –vacuum workshop April 11-12 at CERN (R. Hseuh to attend)
- Proposal of ion detector (ionization profile monitor)
 - –ionization of residual gas? possible e- trapping?
- e-cloud maps: paper published PRST-AB (Iriso-Peggs)
- Active search for student or post-doc to replace Ubaldo

≻CERN

- •New analysis of SPS data (D. Schulte & F. Zimmermann):
 - -peak SEY δ_{max} ~1.4 and e⁻ reflectivity R~0.5 are good solution to fits
- •Cryo pumping available for e-cloud power deposition: $\sim 0.2 \rightarrow \sim 2$ W/m (!)
- •Bug in ECLOUD code found and fixed: need δ_{max} <1.3 at LHC arcs
 - -but SEY model rather simple (eg., no rediffused e-)
- Earlier large ion density observations at SPS: gone (detector artifact)

E-cloud-related recent developments (contd.)

≻LBNL

- Participation at HHH2004 (M. Furman, Nov. 2004)
 - -discussions on e-cloud codes
 - -discussions with W. Herr on beam-beam: basic parameter list for simulations
- •Trip to CERN March 21-25, 2005 (M. Furman and Ji Qiang)
 - -discussions on e-cloud and str-str-BB
 - -feedback from CERN people on our plans
 - -status of CERN work
- Summer student has been made an offer
 - -to start in May 2005 for 10 weeks
 - -total student cost: \$5k
 - –possible tasks (TBD): a) simulate LHC power deposition; b) SPS σ_z dependence; c) simulate RHIC e-cloud detectors

US

Goals

- Progress analyzing June 2004 SPS data (M. Furman and M. Pivi) (0.2 FTE) (*)
 - Especially e⁻ energy spectrum
 - Goal: constrain SEY model for better predictions for LHC
 - Report due 4/05; paper for PAC05 abstract submitted
 - but we are late (need additional pair of hands)
- Further SPS studies: σ_7 dependence (0.1-0.2 FTE)
 - "confusing" lack of correlation between simulations and observations
- LHC heat-load estimate: POSINST-ECLOUD benchmarking (0.2 FTE) (*)
- Report first cut at defining optimal LHC conditioning scenario (0.2 FTE) (*)
 - Define optimal fill pattern during first two (?) years of LHC beam
- Report on applicability of maps to LHC (0.4 FTE) (*)
 - Understand physics of map simulation technique
 - Understand global e-cloud parameter space, phase transitions
- Report on e-cloud simulations for RHIC detectors (0.4 FTE) (**)
 - Calibrate code
 - Then predict BBB tune shift
- Report on e-cloud simulations for LHC IR4 "pilot diagnostic bench" (0.5 FTE)
 - Have some idea what to expect when high-N beam turns on
- (*) strongly endorsed by CERN AP group (see H. Schmickler's talk)
- (**) strongly endorsed by CERN vacuum group (J. Miguel Jiménez)

New e-cloud work at LBNL (non-LARP)

- > Supported by LDRD (coordinated LBNL-LLNL) since Oct. '02
 - ~\$120k/yr (LBNL) + ~\$180k/yr (LLNL)
 - FY05 is 3rd (and last) year
 - integrated program (simulation, diagnostics and measurements)
 - produce a 3D self-consistent code ("WARP/POSINST")
 - based on code "WARP" (self-consistent, parallel, MAD input,...)
 - add POSINST e⁻ emission models, gas, ionization,...
 - arguably state-of-the art
 - centered around the HCX driver for HIF at LBNL
 - E=1.8 MeV K⁺ ions, ~10-m long machine
 - detectors: electrons, gas, ions at the wall
 - HCX can be simulated end-to-end!
 - main goals:
 - measure various quantities (e⁻ and gas yields, ion-wall scattering,...)
 - validate code and understand EC details via comparisons against expts
 - ultimately: <u>predictive simulation tool</u> of general applicability
- Full details: Jean-Luc Vay's talk (next)

Menu of additional goals

- 1. Apply WARP/POSINST to LHC arcs (*) (~2 years at 0.75 FTE/year)
 - 3-D self-consistent studies (beam, e-clouds, lattice, realistic pipe, photo-electrons, secondaries, gas, ...)
 - start with 1 bunch in 1 FODO cell (in progress); then short trains/multiple cells
 - various bunch spacings and intensities, surface modifications, SEY, ...
 - reduced models: 'POSINST' mode for electrons, 'HEADTAIL/QUICKPIC' mode for beams
 - push toward longer systems: 2-D/3-D WARP/POSINST with maps (longer term)
- 2. Seek understanding of SPS long e⁻ survival (0.75 FTE+\$25K hardware)
 - HCX exp'ts can measure e- lifetime in quads
 - modeling will build on our Magnetic Fusion experience
- 3. Detailed validation of code: comparison with other codes and exp't (0.5FTE est.)
- 4. Model microwave transmission through beam tube (SPS, PEP-II) (0.2FTE)
- (*) strongly endorsed by CERN AP group

Menu of additional goals (contd.)

- 1. Measure gas desorbed by beam (1FTE+\$20K supplies)
 - species
 - desorption coefficient
 - distribution f(v,q) (near grazing incidence)
- 2. Measure gas desorption coef's from NEG coatings (0.5FTE+\$10K supplies)
 - image direct gas desorption unperturbed by NEG's pumping
- 3. Extend above to cryo surfaces (1.25FTE+\$250K supplies)
 - Would require a UHV addition to the present high-vacuum HCX, probably isolating the UHV tank with 4 or more UHV magnetic quads.
- 4. Simulate ECE multipactoring by driving electrodes with rf (0.5FTE+\$20K supplies)
 - near the electron bounce frequency in a long (5 μs) beam pulse, with a beam potential of up to 2 kV.
 - RF voltage low enough to pump-out electrons. RF voltage higher to build up e-.

Additional material

EC schedule (Napa LARP Oct. 04)

ricciolator cyclomic innest	01100																			0411		, 200	233		
	FY0		FY05					FY06																	
	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6
Tune Feedback				1				2				3				4									
Luminometer				1		2																			
Abort Gap Monitor/LDM							1																		
Phase I Collimation Studies				1					2			3		4											
Electron Cloud	1				(2	\rightarrow					3		4	_		5.6	7								_
IR and Beam-Beam			1		2000				2		3				4										
Beam Commissioning				1	2			3																	
Phase II Collimators	1							2			3					4									
Hardware Commissioning				1		2					3	4													
	6	7	0	0	10	44	10	4	2	2	4	5	6	7	0	0	10	44	10	4	2	2	1	5	6

Electron Cloud

Accelerator Systems Milestones

- 1) Participate in SPS EC experiments and studies (when?)
- 2) Install cold EC detector in RHIC
- 3) Report on simulated reproduction of measured spectrum & spatial distribution of SPS ECs
- 4) Report first cut at defining optimal LHC conditioning scenario
- 5) Report on applicability of map simulation technique to LHC
- 6) Report on cold EC in RHIC
- 7) Report on simulated EC at IR4 diagnostic bench

June 14, 2004